REVIEW ARTICLE |
|
Year : 2022 | Volume
: 12
| Issue : 1 | Page : 1-8 |
|
Biological functions and diagnostic implications of microRNAs in Mycobacterium tuberculosis infection
Godkowicz Magdalena1, Druszczynska Magdalena2
1 Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland 2 Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
Correspondence Address:
Druszczynska Magdalena Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz Poland
 Source of Support: None, Conflict of Interest: None  | 2 |
DOI: 10.4103/2221-1691.333208
|
|
MicroRNAs (miRNAs), small non-coding RNAs, play important roles in regulating host defense against pathogenic infections. This review provides information on the role of miRNAs in the antimycobacterial immune response and summarizes their possible diagnostic utility. It was compiled using scientific literature retrieved from such databases as PubMed, Scopus, ScienceDirect, Google Scholar, and PubMed Central. Relevant articles published in the English language until December 2020 were taken into consideration. It has been revealed that specific host miRNAs induced by Mycobacterium tuberculosis can target diverse factors and pathways in immune signaling to ensure longer pathogen survival inside the phagocytes. The potential use of miRNAs in tuberculosis diagnosis or therapeutic strategies has been attracting increasing attention in recent years. However, despite considerable efforts devoted to miRNA profiling, further studies are needed to elucidate the full potential of miRNAs as novel tuberculosis biomarkers or therapeutic targets. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|