Impact Factor 2021 : 1.514 (@Clarivate Analytics)
  • Users Online: 383
  • Print this page
  • Email this page
Year : 2020  |  Volume : 10  |  Issue : 2  |  Page : 87-94

Antioxidant and antibacterial activities and identification of bioactive compounds of various extracts of Caulerpa racemosa from Algerian coast

1 Laboratoire de Technologie Alimentaire et de Nutrition, Site II EX-INES de Chimie, Chemin des Crêtes, BP 188, Abdelhamid lbnBadis University, Mostaganem, Algeria
2 Laboratoire de Structure, Elaboration et Application des Matériaux Moléculaires, Site II EX-INES de Chimie, Chemin des Crêtes, BP 188, Abdelhamid IbnBadis University, Mostaganem, Algeria
3 Laboratoire de Chimie Physique des Biomolécules et Interfaces Biologiques, B.P. 305, Route de Mamounia, Mustapha Stambouli University Mascara, Algeria

Correspondence Address:
Louiza Belkacemi
Laboratoire de Technologie Alimentaire et de Nutrition, Site II EX-INES de Chimie, Chemin des Crêtes, BP 188, Abdelhamid lbnBadis University, Mostaganem
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2221-1691.275423

Rights and Permissions

Objective: To evaluate the antibacterial and antioxidant activities and to identify the volatile bioactive compounds present in different crude extracts of the seaweed Caulerpa racemosa var. cylindracea. Methods: Caulerpa racemosa harvested from the intertidal zone of Mostaganem coast (N 35°54’37.94”, E 0°3’17.37”) was subjected to Soxhlet extraction using methanol, chloroform, and hexane solvents. Antioxidant properties were assessed by using 2,2’-diphenyl-1- picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and β-carotene bleaching assays. The antibacterial activity was evaluated on six standard bacterial strains using the agar disc diffusion method. The GC-MS analysis was performed using non-polar and polar capillary columns. Results: The chloroform extract of Caulerpa racemosa exhibited higher contents of polyphenols [(123.91±1.46) mg gallic acid equivalent/ g dry extract] and tannins [(59.28±5.43) mg catechin equivalent/ g dry extract] (P<0.001) and was the most effective in scavenging DPPH [(1.98±0.08) mg/mL] and ABTS [(1.66±0.05) mg/mL] radicals. The hexane extract displayed the best antibacterial activity against Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa, producing inhibition zones of (11.16±0.76), (9.00±0.00) and (9.33±1.15) mm, respectively. The l-(+)-ascorbic acid 2,6- dihexadecanoate and 4-hydroxy-2methylproline were among the most abundant volatile compounds. Besides conventional fatty acids, cis-10-heptadecenoic acid, nonahexacontanoic acid, and dodecanoic acid, 3-hydroxy- were identified. Two phytosterols were identified: stigmast-5-en-3-ol- (12.9%) and stigmast-5-en-3.beta.-ol, (24S)- (4.57%). Conclusions: The preliminary identification of the volatile compounds reveals the presence of some new bioactive components not reported previously in Caulerpa racemosa from other geographical areas. Some of these compounds possess an interesting potential for pharmaceutical/nutraceutical applications.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded839    
    Comments [Add]    
    Cited by others 4    

Recommend this journal