Impact Factor 2021 : 1.514 (@Clarivate Analytics)
5-Year Impact Factor: 2.699 (@Clarivate Analytics)
  • Users Online: 1647
  • Print this page
  • Email this page
Year : 2019  |  Volume : 9  |  Issue : 3  |  Page : 91-97

Free radical scavenging and anti-proliferative activities of avocado (Persea americana Mill.) seed extract

1 NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
2 Faculty of Natural Sciences, Thu Dau Mot University, Binh Duong province, Vietnam

Correspondence Address:
Dai Hung Ngo
Faculty of Natural Sciences, Thu Dau Mot University, Binh Duong province
Thanh Sang Vo
NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2221-1691.254602

Rights and Permissions

Objective: To investigate the chemical components and biological activities of avocado seed extract and fractions in order to determine the nutritional and pharmaceutical values of avocado seed. Methods: Various organic solvents were applied for extraction and fractionation of avocado seed. 1,1-diphenyl-2-picryl-hydrazyl, 2,2-azinobis-3-ethyl benzothiazoline-6-sulfonic acid, and DNA oxidation assays were applied for investigation of free radical scavenging activity. Nitric oxide production was measured by Griess reaction assay. Moreover, MTT assay was used to measure cancer cell growth inhibition. Results: The result indicated that the avocado seed contains (7.14 ± 0.40) g lipid/100 g, (1.67 ± 0.03) g protein/100 g, (54.0 ± 1.2) g carbohydrate/100 g, and (62.0 ± 2.3) mg gallic acid equivalent/g dried weight extract. Moreover, dichloromethane and ethyl acetate were revealed to be the highest free radical scavenging fractions with IC50 values of (48.0 ± 3.4) μg/mL (1,1-diphenyl-2-picryl-hydrazyl assay) and (22.0 ± 1.8) μg/mL (2,2-azinobis-3-ethyl benzothiazoline-6-sulfonic acid assay), respectively. Additionally, the avocado seed extract and fractions were able to protect against H2O2-induced DNA damage at the concentration of 100 μg/mL. On the other hand, the ethanol extract was effective in reducing nitric oxide production from lipopolysaccharide-stimulated RAW 264.7 macrophage cells without cytotoxic effect. Notably, the avocado seed significantly inhibited the proliferation of human lung A549 and human gastric BGC823 cancer cells at the concentration of 200 μg/mL, especially hexane (81 ± 3)% and dichloromethane (75 ± 2)% fractions. Conclusions: The results of the present study supported the avocado seed as potential by-product source for further development of health beneficial products.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded1101    
    Comments [Add]    
    Cited by others 11    

Recommend this journal